张淑美
- 作品数:2 被引量:21H指数:2
- 供职机构:东北大学信息科学与工程学院更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金辽宁省科学技术计划项目更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于数据特性分析的多变量过程监测被引量:3
- 2017年
- 以PCA,ICA为代表的多元统计监测方法总是基于各种各样的前提假设,如果不考虑它们的适用条件盲目选择监测算法,则可能给出错误结论,增加故障误报漏报的概率.针对理论方法在应用时面临的条件限制问题,在无先验知识的情况下,提出一种数据特性的分析方法,通过参数寻优并逐步剔除线性相关变量组的方法,实现多变量过程线性非线性的自动判别.仿真分析表明所提方法可以根据数据特点及各算法的适用条件自动选择适当的监测算法,具有一定的实用价值.
- 张淑美王福利王姝李嫱嫱
- 多模态过程的全自动离线模态识别方法被引量:18
- 2016年
- 多模态是复杂工业生产过程的普遍特性.不同模态具有不同的过程特性,需要建立不同的模型,因此离线建模数据的模态划分与识别是整个多模态过程建模的关键问题之一.目前,常用的聚类算法需要对其结果进行人工分析和后续处理,无法真正实现多模态过程的全自动模态识别.因此,本文提出一种全自动的多模态过程离线模态识别方法.首先通过宽度为H的大切割窗口对数据进行切割,利用改进的K-means聚类算法对窗口单元进行聚类;根据聚类结果,对稳定模态淹没现象进行处理,得到模态的初步划分结果;最终,利用小滑动窗口L,对稳定模态及过渡模态交接区域进行细划分,准确定位稳定模态与过渡模态的分割点.算法实现了多模态过程的全自动离线识别,并给出合理有效的识别结果.仿真分析表明此方法能够实现模态的自动识别,且识别结果准确.
- 张淑美王福利谭帅王姝
- 关键词:模态识别全自动