随着无人机硬件成本的降低和深度学习算法的发展,部署在无人机终端的实时目标检测算法在诸多领域展现出广泛的应用前景。然而,嵌入式设备有限的能耗和算力,以及普适性目标检测算法对于小目标特征提取不够充分等问题,制约了此类算法速度和精度的提升。文中提出了一种部署在无人机终端上的小目标实时检测算法DS⁃YOLO(Dense⁃SPP YOLO),算法基于密集连接的思想设计了全新的主干网络,并改进了空间金字塔池化模块以增强小目标的特征提取和多尺度特征复用,最后基于批归一化层(Batch⁃Normalization)的缩放因子修剪网络中不重要的通道,修剪瘦身后的算法更加适合部署在移动端。在Visdrone2019⁃DET数据集上的测试结果表明,DS⁃YOLO算法mAP(mean Average Precision)指标比SlimYOLOv3算法提升约3%,检测速度达到89 FPS(Frames Per Second),高于SlimYOLOv3的67 FPS。
在线社会网络已经成为社会学和信息科学的数据宝库,但是直接分析社会网络数据会造成敏感信息泄漏,对用户隐私构成威胁。传统的基于数据匿名化技术的隐私保护技术面对不断提高的背景攻击显得无能为力。对此,差分隐私作为一种可以严格定义的可量化技术被引入到社会网络的隐私保护中。文中提出一种基于层次随机图(Hierarchical Random Graph)的满足ε-差分隐私的社会网络图发布算法DP-HRGP(Differential Privacy-Hierarchical Random Graph Publishing)。该算法的噪声增加机制分为两个阶段:首先通过指数机制计算HRG结构树的得分,并利用马尔科夫蒙特卡洛(Markov Chain Monte Carlo)方法进行采样得到HRG结构树候选集合,然后通过拉普拉斯机制对稳态采样集合中的HRG的内部节点进行加噪,将加噪后的HRG转化为下三角矩阵,并求出所有稳态采样HRG的下三角均值矩阵,最后,根据均值矩阵内元素值即层次随机图的内部节点的连接概率值生成净化后的社会网络发布图。实验证明了DP-HRGP算法在满足ε-差分隐私的同时具有较好的数据可用性。