The titanium-based composites were synthesized by powder metallurgy method. The effects of composition and sintering temperature on the microstructure and properties of the titanium-based composites were investigated by X-ray diffraction, optical microscopy, scanning electron microscopy and mechanical properties tests. The results demonstrate that adding ZrO2 particles can improve the mechanical properties of powder metallurgy (P/M) titanium-based composites. The Ti composite with 4% (mole fraction) ZrO2 sintered at 1100 °C for 4 h shows an appropriate mechanical property with a relative density of 93.9%, a compressive strength of 1380 MPa (570 MPa higher than pure Ti) and good plasticity (an ultimate strain above 24%).
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength.